On the use of multivariate regression methods for longest path calculations from earned value management observations
Mario Vanhoucke and
Jeroen Colin
Omega, 2016, vol. 61, issue C, 127-140
Abstract:
This paper explores the use of multivariate regression methods for project schedule control within a statistical project control framework. These multivariate regression methods monitor the activity level performance of an ongoing project from the earned value management/earned schedule (EVM/ES) observations that are made at a high level of the work breakdown structure (WBS). These estimates can be used to calculate the longest path in the project and to produce warning signals for project schedule control. The effort that is spent by the project manager is thereby reduced, since a drill-down of the WBS is no longer required for every review period. An extensive computational experiment was set up to test and compare four distinct multivariate regression methods on a database of project networks. The kernel principal component regression method, when used with a radial base function kernel, was found to outperform the other presented regression methods.
Keywords: Project management; Scheduling; Risk; Simulation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048315001553
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:61:y:2016:i:c:p:127-140
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.omega.2015.07.013
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().