Beyond mean estimates of price and promotional effects in scanner-panel sales–response regression
Harry Haupt and
Kathrin Kagerer
Journal of Retailing and Consumer Services, 2012, vol. 19, issue 5, 470-483
Abstract:
Traditional mean estimates of conditional sales given price and promotion variables may provide misleading guidance about the underlying market mechanisms, since high, low, and medium sales, respectively, may be generated by quite different price and promotion strategies. Empirical evidence for consumer good scanner data reveals nonlinearities and heteroskedasticity in the sales–response relationship—mean effects typically average and hence may obscure a potentially rich nature of observational data. Besides addressing the heterogeneity of price and promotional effects, the proposed quantile regression framework allows direct estimation of monotonicity restricted nonlinear pricing effects for quantiles of the sales distribution.
Keywords: Sales–response; Elasticity; Quantile regression; Semiparametric (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0969698912000653
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:joreco:v:19:y:2012:i:5:p:470-483
DOI: 10.1016/j.jretconser.2012.06.002
Access Statistics for this article
Journal of Retailing and Consumer Services is currently edited by Harry Timmermans
More articles in Journal of Retailing and Consumer Services from Elsevier
Bibliographic data for series maintained by Catherine Liu ().