A deep hybrid learning model for customer repurchase behavior
Jina Kim,
HongGeun Ji,
Soyoung Oh,
Syjung Hwang,
Eunil Park and
Angel P. del Pobil
Journal of Retailing and Consumer Services, 2021, vol. 59, issue C
Abstract:
Smartphones have become an integral part of our daily lives, which has led to the rapid growth of the smartphone market. As the global smartphone market tends to remain stable, retaining existing customers has become a challenge for smartphone manufacturers. This study investigates whether a deep hybrid learning approach with various customer-oriented types of data can be useful in exploring customer repurchase behavior of same-brand smartphones. Considering data from more than 74,000 customers, the proposed deep learning approach showed a prediction accuracy higher than 90%. Based on the results of deep hybrid learning models, we aim to provide better understanding on customer behavior, such that it could be used as valuable assets for innovating future marketing strategies.
Keywords: Deep learning; Smartphone; Customer repurchase; Online review (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0969698920313898
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:joreco:v:59:y:2021:i:c:s0969698920313898
DOI: 10.1016/j.jretconser.2020.102381
Access Statistics for this article
Journal of Retailing and Consumer Services is currently edited by Harry Timmermans
More articles in Journal of Retailing and Consumer Services from Elsevier
Bibliographic data for series maintained by Catherine Liu ().