EconPapers    
Economics at your fingertips  
 

Combining sell-out data with shopper behaviour data for category performance measurement: The role of category conversion power

Federica Pascucci, Lorenzo Nardi, Luca Marinelli, Marina Paolanti, Emanuele Frontoni and Gian Luca Gregori

Journal of Retailing and Consumer Services, 2022, vol. 65, issue C

Abstract: Retailers need to manage a series of complex decisions relating to numerous products. To reduce this complexity, they have introduced category management practices, which consider groups of similar products (categories) that can be managed separately as single business units (SBUs). Although the concept that the store offer should be organised as a category mix and that this strategy allows for better overall store management is already consolidated, retailers still struggle to adopt an approach to the store performance measurement starting from a category level perspective. Nowadays, the available methods for measuring categories’ performance are quite limited. The current trend sees the measurement of category performance mainly based on sell-out data that are ill-equipped to fully address category management issues. Retailers should broaden their field of analysis not only by focusing on the product/sales perspective but also by including other methodologies such as shopper behaviour analysis. In this regard, the use of technology offers the retail sector new perspectives for those analysis. Therefore, we intend to contribute to the ongoing debate on the retail analytics topic by presenting a shopper behaviour analytics system for category management performance monitoring. More in detail, we could derive a new key performance indicator, category conversion power (CCP), aimed at analysing and comparing the single categories organised within the store. The research is based on a unique dataset obtained from a real-time locating system (RTLS), which allowed us to collect behavioural data togheter with sell-out data (from POS scanner). We argue that retailers could exploit this new analytical method to gain more understanding at the category level and therefore make data-driven decisions aimed at improving performance at the store level.

Keywords: Category management; Performance measurement; Shopper behaviour; Retail marketing; RTLS technology; Big data (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096969892100446X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:joreco:v:65:y:2022:i:c:s096969892100446x

DOI: 10.1016/j.jretconser.2021.102880

Access Statistics for this article

Journal of Retailing and Consumer Services is currently edited by Harry Timmermans

More articles in Journal of Retailing and Consumer Services from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:joreco:v:65:y:2022:i:c:s096969892100446x