Retail store location screening: A machine learning-based approach
Jialiang Lu,
Xu Zheng,
Esterina Nervino,
Yanzhi Li,
Zhihua Xu and
Yabo Xu
Journal of Retailing and Consumer Services, 2024, vol. 77, issue C
Abstract:
With numerous location choices across dispersed markets and a lack of detailed store-level information, the initial screening process for selecting store locations is challenging. We propose a machine learning-based model that uses public city-, competitor-, and point-of-interest (POI)-level data, including target group indices (TGIs), and apply machine learning to recommend sites based on predicted store performance. We demonstrate the effectiveness of our approach with real data from a jewelry retailing chain. Three machine learning approaches were developed and tested using data from 743 same-brand jewelry stores, and we find that a customized sequential ensemble model performs the best and outperforms the best available industry benchmarks. Our approach offers a new scalable and cost-efficient screening process for retailers to identify potentially top-performing locations.
Keywords: Store location screening; Machine learning; Target group indices; Point-of-interest; Sequential ensemble model (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0969698923003715
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:joreco:v:77:y:2024:i:c:s0969698923003715
DOI: 10.1016/j.jretconser.2023.103620
Access Statistics for this article
Journal of Retailing and Consumer Services is currently edited by Harry Timmermans
More articles in Journal of Retailing and Consumer Services from Elsevier
Bibliographic data for series maintained by Catherine Liu ().