Predicting E-commerce customer satisfaction: Traditional machine learning vs. deep learning approaches
Maha Zaghloul,
Sherif Barakat and
Amira Rezk
Journal of Retailing and Consumer Services, 2024, vol. 79, issue C
Abstract:
The rapid growth of e-commerce has increased the need for retailers to understand and predict customer satisfaction to support data-driven managerial decisions. This study analyzes online consumer behavior through a comparative machine learning modeling approach to forecast future customer satisfaction based on review ratings. Using a large dataset of over 100Â k online orders from a major retailer, traditional machine learning models including random forest and support vector machines are benchmarked against deep learning techniques like multi-layer perceptrons. The predictive models are assessed for their ability to accurately predict customer satisfaction scores for the next orders based on key e-commerce features including delivery time, order value, and location. The findings demonstrate that the random forest model can predict future satisfaction with 92% accuracy, outperforming deep learning. The analysis further identifies core drivers of satisfaction such as delivery time and order accuracy. These insights enable retail managers to make targeted improvements, like optimizing logistics, to increase customer loyalty and revenue. This study provides a framework for leveraging predictive analytics and machine learning to unlock data-driven insights into online consumer behavior and satisfaction for superior retail decision-making. The focus on generalizable insights across a major retailer enhances the practical applicability of the machine learning approach for the retail sector.
Keywords: Customer satisfaction; Deep learning; E-commerce; Machine learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0969698924001619
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:joreco:v:79:y:2024:i:c:s0969698924001619
DOI: 10.1016/j.jretconser.2024.103865
Access Statistics for this article
Journal of Retailing and Consumer Services is currently edited by Harry Timmermans
More articles in Journal of Retailing and Consumer Services from Elsevier
Bibliographic data for series maintained by Catherine Liu ().