EconPapers    
Economics at your fingertips  
 

Numerical solution of parabolic Cauchy problems in planar corner domains

R. Chapko, B.T. Johansson and V. Vavrychuk

Mathematics and Computers in Simulation (MATCOM), 2014, vol. 101, issue C, 1-12

Abstract: An iterative method for the parabolic Cauchy problem in planar domains having a finite number of corners is implemented based on boundary integral equations. At each iteration, mixed well-posed problems are solved for the same parabolic operator. The presence of corner points renders singularities of the solutions to these mixed problems, and this is handled with the use of weight functions together with, in the numerical implementation, mesh grading near the corners. The mixed problems are reformulated in terms of boundary integrals obtained via discretization of the time-derivative to obtain an elliptic system of partial differential equations. To numerically solve these integral equations a Nyström method with super-algebraic convergence order is employed. Numerical results are presented showing the feasibility of the proposed approach.

Keywords: Heat equation; Cauchy problem; Landweber method; Corner singularities; Boundary integral equation (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475414000457
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:101:y:2014:i:c:p:1-12

DOI: 10.1016/j.matcom.2014.03.001

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:101:y:2014:i:c:p:1-12