McMC estimation of multiscale stochastic volatility models with applications
Chuan-Hsiang Han (),
German Molina and
Jean-Pierre Fouque
Mathematics and Computers in Simulation (MATCOM), 2014, vol. 103, issue C, 1-11
Abstract:
In this paper we propose to use Markov chain Monte Carlo methods to estimate the parameters of stochastic volatility models with several factors varying at different time scales. The originality of our approach, in contrast with classical factor models is the identification of two factors driving univariate series at well-separated time scales. This is tested with simulated data as well as foreign exchange data. Furthermore, we exploit the model calibration problem of implied volatility surface by postulating a computational scheme, which consists of McMC estimation and variance reduction techniques in MC/QMC simulations for option evaluation under multi-scale stochastic volatility models. Empirical studies and its extension are discussed.
Keywords: Time scales in volatility; Markov chain Monte Carlo; Multifactor model; Implied volatility surface; Model calibration (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475414000482
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:103:y:2014:i:c:p:1-11
DOI: 10.1016/j.matcom.2013.07.005
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().