A parametric approach to 3D dynamic geometry
Francisco Botana
Mathematics and Computers in Simulation (MATCOM), 2014, vol. 104, issue C, 3-20
Abstract:
Dynamic geometry systems are computer applications allowing the exact on-screen drawing of geometric diagrams and their interactive manipulation by mouse dragging. Whereas there exists an extensive list of 2D dynamic geometry environments, the number of 3D systems is reduced. Most of them, both in 2D and 3D, share a common approach, using numerical data to manage geometric knowledge and elementary methods to compute derived objects.
Keywords: 3D dynamic geometry; Automated deduction; Groebner bases; Parametric polynomial systems; Degenerated conditions (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475413001390
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:104:y:2014:i:c:p:3-20
DOI: 10.1016/j.matcom.2012.12.004
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().