EconPapers    
Economics at your fingertips  
 

Weighted Lagrange interpolation with preassigned nodes on the real line

M.R. Capobianco and G. Criscuolo

Mathematics and Computers in Simulation (MATCOM), 2014, vol. 106, issue C, 124-132

Abstract: In a recent paper, we investigated the uniform convergence of Lagrange interpolation at the zeros of the orthogonal polynomials with respect to a Freud-type weight in the presence of constraints. We show that by a simple procedure it is always possible to transform the matrices of these zeros into matrices such that the corresponding Lagrange interpolating polynomial with respect to the given constraints well approximates a given function. Here, starting from the interest to construct a suitable interpolation operator with a preassigned node, we introduce an algorithm that allows us to obtain new matrices. For the Lagrange operator related to these new matrices that have the preassigned node among their elements, we prove results about the optimal rate of convergence as well as we apply successfully this method to some applications.

Keywords: Interpolation; Freud weights; Lebesgue constants; Hilbert transform (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475414000196
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:106:y:2014:i:c:p:124-132

DOI: 10.1016/j.matcom.2013.12.004

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:106:y:2014:i:c:p:124-132