Weighted Lagrange interpolation with preassigned nodes on the real line
M.R. Capobianco and
G. Criscuolo
Mathematics and Computers in Simulation (MATCOM), 2014, vol. 106, issue C, 124-132
Abstract:
In a recent paper, we investigated the uniform convergence of Lagrange interpolation at the zeros of the orthogonal polynomials with respect to a Freud-type weight in the presence of constraints. We show that by a simple procedure it is always possible to transform the matrices of these zeros into matrices such that the corresponding Lagrange interpolating polynomial with respect to the given constraints well approximates a given function. Here, starting from the interest to construct a suitable interpolation operator with a preassigned node, we introduce an algorithm that allows us to obtain new matrices. For the Lagrange operator related to these new matrices that have the preassigned node among their elements, we prove results about the optimal rate of convergence as well as we apply successfully this method to some applications.
Keywords: Interpolation; Freud weights; Lebesgue constants; Hilbert transform (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475414000196
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:106:y:2014:i:c:p:124-132
DOI: 10.1016/j.matcom.2013.12.004
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().