Complex attractors and basins in a growth model with nonconcave production function and logistic population growth rate
Elisabetta Michetti
Mathematics and Computers in Simulation (MATCOM), 2015, vol. 108, issue C, 215-232
Abstract:
In this paper we study a discrete-time growth model of the Solow type with nonconcave production function where shareholders save more than workers and the population growth dynamics is described by the logistic equation. We prove that the resulting system has a compact global attractor and we describe its structure. We also perform a mainly numerical analysis to show that complex features are exhibited, related both to the structure of the coexisting attractors and to their basins. The study presented aims at showing the existence of complex dynamics when the elasticity of substitution between production factors is not too high (so that capital income declines) or the parameter in the logistic equation increases (so that the amplitude of movements in the population growth rate increases).
Keywords: Triangular system; Critical curves and absorbing areas; Local and global dynamics; Economic growth and population dynamics (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475413002243
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:108:y:2015:i:c:p:215-232
DOI: 10.1016/j.matcom.2013.09.001
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().