Solving the Pareto front for multiobjective Markov chains using the minimum Euclidean distance gradient-based optimization method
Julio B. Clempner and
Alexander S. Poznyak
Mathematics and Computers in Simulation (MATCOM), 2016, vol. 119, issue C, 142-160
Abstract:
A novel method based on minimizing the Euclidean distance is proposed for generating a well-distributed Pareto set in multi-objective optimization for a class of ergodic controllable Markov chains. The proposed approach is based on the concept of strong Pareto policy. We consider the case where the search space is a non-strictly convex set. For solving the problem we introduce the Tikhonov’s regularization method and implement the Lagrange principle. We formulate the original problem introducing linear constraints over the nonlinear problem employing the c-variable method and constraining the cost-functions allowing points in the Pareto front to have a small distance from one another. As a result, the proposed method generates an even representation of the entire Pareto surface. Then, we propose an algorithm to compute the Pareto front and provide all the details needed to implement the method in an efficient and numerically stable way. As well, we prove the main Theorems for describing the dependence of the saddle point for the regularizing parameter and analyzes its asymptotic behavior. Moreover, we analyze the step size parameter of the Lagrange principle and also its asymptotic behavior. The suggested approach is validated theoretically and verified by a numerical example related to security patrolling that present a technique for visualizing the Pareto front.
Keywords: Multi-objective optimization; Markov chains; Pareto front; Strong Pareto policies; Euclidean distance (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847541500155X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:119:y:2016:i:c:p:142-160
DOI: 10.1016/j.matcom.2015.08.004
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().