Stochastic finite differences for elliptic diffusion equations in stratified domains
Sylvain Maire and
Giang Nguyen
Mathematics and Computers in Simulation (MATCOM), 2016, vol. 121, issue C, 146-165
Abstract:
We describe Monte Carlo algorithms to solve elliptic partial differential equations with piecewise constant diffusion coefficients and general boundary conditions including Robin and transmission conditions as well as a damping term. The treatment of the boundary conditions is done via stochastic finite differences techniques which possess a higher order than the usual methods. The simulation of Brownian paths inside the domain relies on variations around the walk on spheres method with or without killing. We check numerically the efficiency of our algorithms on various examples of diffusion equations illustrating each of the new techniques introduced here.
Keywords: Monte Carlo method; Elliptic diffusion equations; Stratified media; Stochastic finite differences; Walk on spheres (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475415001962
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:121:y:2016:i:c:p:146-165
DOI: 10.1016/j.matcom.2015.09.008
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().