Counting and enumerating feasible rotating schedules by means of Gröbner bases
Raúl Falcón,
Eva Barrena,
David Canca and
Gilbert Laporte
Mathematics and Computers in Simulation (MATCOM), 2016, vol. 125, issue C, 139-151
Abstract:
This paper deals with the problem of designing and analyzing rotating schedules with an algebraic computational approach. Specifically, we determine a set of Boolean polynomials whose zeros can be uniquely identified with the set of rotating schedules related to a given workload matrix subject to standard constraints. These polynomials constitute zero-dimensional radical ideals, whose reduced Gröbner bases can be computed to count and even enumerate the set of rotating schedules that satisfy the desired set of constraints. Thereby, it enables to analyze the influence of each constraint in the same.
Keywords: Rotating schedule; Boolean ideal; Gröbner basis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475414003292
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:125:y:2016:i:c:p:139-151
DOI: 10.1016/j.matcom.2014.12.002
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().