Nonlinear bi-integrable couplings with Hamiltonian structures
Wen-Xiu Ma,
Jinghan Meng and
Mengshu Zhang
Mathematics and Computers in Simulation (MATCOM), 2016, vol. 127, issue C, 166-177
Abstract:
Bi-integrable couplings of soliton equations are presented through introducing non-semisimple matrix Lie algebras on which there exist non-degenerate, symmetric and ad-invariant bilinear forms. The corresponding variational identity yields Hamiltonian structures of the resulting bi-integrable couplings. An application to the AKNS spectral problem gives bi-integrable couplings with Hamiltonian structures for the AKNS equations.
Keywords: Bi-integrable coupling; Zero curvature equation; Hamiltonian structure (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847541400069X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:127:y:2016:i:c:p:166-177
DOI: 10.1016/j.matcom.2013.11.007
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().