A strain space framework for numerical hyperplasticity
L.G. Margolin
Mathematics and Computers in Simulation (MATCOM), 2016, vol. 127, issue C, 178-188
Abstract:
Numerical simulations of high strain rate plastic flow have historically been built in a hypoelastic framework and use radial return (Wilkins’ method) as the solution algorithm. We show how each of these choices can lead to inaccurate and possibly nonconvergent results. We describe an alternative solution procedure based on a simple multiple time scale perturbation theory that is stable, accurate, computationally efficient and simple to implement. Further extension of these results then leads to a strain space formulation that has additional computational advantages. We illustrate our development with numerical experiments.
Keywords: Numerical plasticity; Hyperplasticity; Wilkins’ method (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475412001693
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:127:y:2016:i:c:p:178-188
DOI: 10.1016/j.matcom.2012.06.016
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().