Hyperbolic diffusion with Christov–Morro theory
M. Gentile and
B. Straughan
Mathematics and Computers in Simulation (MATCOM), 2016, vol. 127, issue C, 94-100
Abstract:
We employ recent ideas of C.I. Christov and of A. Morro to develop a theory for diffusion of a solute in a Darcy porous medium taking convection effects into account. The key point is that the solute evolution is not governed by a parabolic system of equations. Indeed, the theory developed is basically hyperbolic. This still leads to a model which allows for convective (gravitational) overturning in a porous layer, but in addition to the classical mode of stationary convection instability there is the possibility of oscillating convection being dominant for a lower salt Rayleigh number, if the relaxation time is sufficiently large.
Keywords: Convection in porous media; Hyperbolic diffusion; Christov concentration flux equation; Linear instability; Oscillatory convection (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475412001735
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:127:y:2016:i:c:p:94-100
DOI: 10.1016/j.matcom.2012.07.010
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().