Stability analysis and finite volume element discretization for delay-driven spatio-temporal patterns in a predator–prey model
Raimund Bürger,
Ricardo Ruiz-Baier and
Canrong Tian
Mathematics and Computers in Simulation (MATCOM), 2017, vol. 132, issue C, 28-52
Abstract:
Time delay is an essential ingredient of spatio-temporal predator–prey models since the reproduction of the predator population after predating the prey will not be instantaneous, but is mediated by a constant time lag accounting for the gestation of predators. In this paper we study a predator–prey reaction–diffusion system with time delay, where a stability analysis involving Hopf bifurcations with respect to the delay parameter and simulations produced by a new numerical method reveal how this delay affects the formation of spatial patterns in the distribution of the species. In particular, it turns out that when the carrying capacity of the prey is large and whenever the delay exceeds a critical value, the reaction–diffusion system admits a limit cycle due to the Hopf bifurcation. This limit cycle induces the spatio-temporal pattern. The proposed discretization consists of a finite volume element (FVE) method combined with a Runge–Kutta scheme.
Keywords: Spatio-temporal patterns; Time delay; Limit cycle; Pattern selection; Finite volume element discretization (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847541630088X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:132:y:2017:i:c:p:28-52
DOI: 10.1016/j.matcom.2016.06.002
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().