EconPapers    
Economics at your fingertips  
 

I-Delaporte process and applications

M.D. Lazarova and L.D. Minkova

Mathematics and Computers in Simulation (MATCOM), 2017, vol. 133, issue C, 135-141

Abstract: In this paper we introduce a mixed Pólya–Aeppli process with shifted gamma mixing distribution and call it an Inflated-parameter Delaporte process (I-Delaporte process). We derive the probability mass function, moments and some basic properties. Then we define the process as a pure birth process and derive differential equations for the probabilities. As application, we consider a risk model in which the claim counting process is the defined I-Delaporte process. For the defined risk model we derive the joint distribution of the time to ruin and the deficit at ruin as well as the ruin probability. We discuss in detail the particular case of exponentially distributed claims.

Keywords: Mixed distributions; Pure birth process; Delaporte process; Ruin probability (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475415002608
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:133:y:2017:i:c:p:135-141

DOI: 10.1016/j.matcom.2015.12.003

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:133:y:2017:i:c:p:135-141