EconPapers    
Economics at your fingertips  
 

Stationary and oscillatory patterns in a coupled Brusselator model

Roumen Anguelov and Stephanus Marnus Stoltz

Mathematics and Computers in Simulation (MATCOM), 2017, vol. 133, issue C, 39-46

Abstract: This paper presents a numerical investigation into the pattern formation mechanism in the Brusselator model focusing on the interplay between the Hopf and Turing bifurcations. The dynamics of a coupled Brusselator model is studied in terms of wavelength and diffusion, thus providing insight into the generation of stationary and oscillatory patterns. The expected asymptotic behavior is confirmed by numerical simulations. The observed patterns include inverse labyrinth oscillations, inverse hexagonal oscillations, dot hexagons and parallel lines.

Keywords: Nonlinear reaction rate; Brusselator model; Coupled system; Turing patterns; Hopf bifurcation (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475415001111
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:133:y:2017:i:c:p:39-46

DOI: 10.1016/j.matcom.2015.06.002

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:133:y:2017:i:c:p:39-46