EconPapers    
Economics at your fingertips  
 

Complexity of parametric initial value problems for systems of ODEs

Thomas Daun and Stefan Heinrich

Mathematics and Computers in Simulation (MATCOM), 2017, vol. 135, issue C, 72-85

Abstract: We study the approximate solution of initial value problems for parameter dependent finite or infinite systems of scalar ordinary differential equations (ODEs). Both the deterministic and the randomized setting is considered, with input data from various smoothness classes. We study deterministic and Monte Carlo multilevel algorithms and derive convergence rates. Moreover, we prove their optimality by showing matching (in some limit cases up to logarithmic factors) lower bounds and settle this way the complexity. Comparisons between the deterministic and randomized setting are given, as well.

Keywords: Ordinary differential equation; Initial value problem; Parametric problem; Multilevel Monte Carlo; Information-based complexity (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475415000713
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:135:y:2017:i:c:p:72-85

DOI: 10.1016/j.matcom.2015.04.008

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:135:y:2017:i:c:p:72-85