EconPapers    
Economics at your fingertips  
 

Metric tensor recovery for adaptive meshing

P. Laug and H. Borouchaki

Mathematics and Computers in Simulation (MATCOM), 2017, vol. 139, issue C, 54-66

Abstract: Adaptive computation is now recognized as essential for solving complex PDE problems. Conceptually, such a computation requires at each step the definition of a continuous metric field (mesh size and direction) to govern the generation of adapted meshes. In practice, in the adaptive computation, an appropriate a posteriori error estimation is used and an upper-bounding of the error is expressed in terms of discrete metrics associated with the element vertices. In order to obtain a continuous metric field, the discrete field is recovered in the whole domain mesh using an appropriate interpolation method on each element. In this paper, a new method for interpolating discrete metric fields, based on a so-called “natural decomposition” of metrics, is introduced. The proposed method uses known matrix decompositions and is computationally robust and efficient. Classical interpolation methods are recalled and, from numerical examples on simplicial mesh elements, some qualitative comparisons against the new methodology are made to show its relevance.

Keywords: Metric interpolation; Adaptive meshing; Adaptive computation; Natural basis; Error estimation (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475415000373
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:139:y:2017:i:c:p:54-66

DOI: 10.1016/j.matcom.2015.02.004

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:139:y:2017:i:c:p:54-66