A random walk model for the Schrödinger equation
Wolfgang Wagner
Mathematics and Computers in Simulation (MATCOM), 2018, vol. 143, issue C, 138-148
Abstract:
A random walk model for the spatially discretized time-dependent Schrödinger equation is constructed. The model consists of a class of piecewise deterministic Markov processes. The states of the processes are characterized by a position and a complex-valued weight. Jumps occur both on the spatial grid and in the space of weights. Between the jumps, the weights change according to deterministic rules. The main result is that certain functionals of the processes satisfy the Schrödinger equation.
Keywords: Schrödinger equation; Probabilistic representation; Random walk model; Piecewise deterministic Markov process (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475416301239
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:143:y:2018:i:c:p:138-148
DOI: 10.1016/j.matcom.2016.07.012
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().