EconPapers    
Economics at your fingertips  
 

Sorting methods and convergence rates for Array-RQMC: Some empirical comparisons

L’Ecuyer, Pierre, David Munger, Christian Lécot and Bruno Tuffin

Mathematics and Computers in Simulation (MATCOM), 2018, vol. 143, issue C, 191-201

Abstract: We review the Array-RQMC method, its variants, sorting strategies, and convergence results. We are interested in the convergence rate of measures of discrepancy of the states at a given step of the chain, as a function of the sample size n, and also the convergence rate of the variance of the sample average of a (cost) function of the state at a given step, viewed as an estimator of the expected cost. We summarize known convergence rate results and show empirical results that suggest much better convergence rates than those that are proved. We also compare different types of multivariate sorts to match the chains with the RQMC points, including a sort based on a Hilbert curve.

Keywords: Low discrepancy; Quasi-Monte Carlo; Markov chain; Variance reduction; Array-RQMC (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475416301203
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:143:y:2018:i:c:p:191-201

DOI: 10.1016/j.matcom.2016.07.010

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:143:y:2018:i:c:p:191-201