EconPapers    
Economics at your fingertips  
 

Model order reduction and low-dimensional representations for random linear dynamical systems

Roland Pulch

Mathematics and Computers in Simulation (MATCOM), 2018, vol. 144, issue C, 1-20

Abstract: We consider linear dynamical systems of ordinary differential equations or differential algebraic equations. Physical parameters are substituted by random variables for an uncertainty quantification. We expand the state variables as well as a quantity of interest into an orthogonal system of basis functions, which depend on the random variables. For example, polynomial chaos expansions are applicable. The stochastic Galerkin method yields a larger linear dynamical system, whose solution approximates the unknown coefficients in the expansions. The Hardy norms of the transfer function provide information about the input–output behaviour of the Galerkin system. We investigate two approaches to construct a low-dimensional representation of the quantity of interest, which can also be interpreted as a sparse representation. Firstly, a standard basis is reduced by the omission of basis functions, whose accompanying Hardy norms are relatively small. Secondly, a projection-based model order reduction is applied to the Galerkin system and allows for the definition of new basis functions within a low-dimensional representation. In both cases, we prove error bounds on the low-dimensional approximation with respect to Hardy norms. Numerical experiments are demonstrated for two test examples.

Keywords: Linear dynamical systems; Orthogonal expansion; Polynomial chaos; Model order reduction; Hardy norms (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475417302057
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:144:y:2018:i:c:p:1-20

DOI: 10.1016/j.matcom.2017.05.007

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:144:y:2018:i:c:p:1-20