Direct tensor-product solution of one-dimensional elliptic equations with parameter-dependent coefficients
Sergey V. Dolgov,
Vladimir A. Kazeev and
Boris N. Khoromskij
Mathematics and Computers in Simulation (MATCOM), 2018, vol. 145, issue C, 136-155
Abstract:
We consider a one-dimensional second-order elliptic equation with a high-dimensional parameter in a hypercube as a parametric domain. Such a problem arises, for example, from the Karhunen–Loève expansion of a stochastic PDE posed in a one-dimensional physical domain. For the discretization in the parametric domain we use the collocation on a tensor-product grid. The paper is focused on the tensor-structured solution of the resulting multiparametric problem, which allows to avoid the curse of dimensionality owing to the use of the separation of parametric variables in the tensor train and quantized tensor train formats.
Keywords: Elliptic equations; Parametric problems; Tensor formats; Sherman–Morrison correction; Preconditioning (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475417303476
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:145:y:2018:i:c:p:136-155
DOI: 10.1016/j.matcom.2017.10.009
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().