EconPapers    
Economics at your fingertips  
 

A multiscale collocation method for fractional differential problems

L. Pezza and F. Pitolli

Mathematics and Computers in Simulation (MATCOM), 2018, vol. 147, issue C, 210-219

Abstract: We introduce a multiscale collocation method to numerically solve differential problems involving both ordinary and fractional derivatives of high order. The proposed method uses multiresolution analyses (MRA) as approximating spaces and takes advantage of a finite difference formula that allows us to express both ordinary and fractional derivatives of the approximating function in a closed form. Thus, the method is easy to implement, accurate and efficient. The convergence and the stability of the multiscale collocation method are proved and some numerical results are shown.

Keywords: Fractional differential problem; Collocation method; Fractional derivative; Fractional refinable function (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475417302768
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:147:y:2018:i:c:p:210-219

DOI: 10.1016/j.matcom.2017.07.005

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:147:y:2018:i:c:p:210-219