A multiscale collocation method for fractional differential problems
L. Pezza and
F. Pitolli
Mathematics and Computers in Simulation (MATCOM), 2018, vol. 147, issue C, 210-219
Abstract:
We introduce a multiscale collocation method to numerically solve differential problems involving both ordinary and fractional derivatives of high order. The proposed method uses multiresolution analyses (MRA) as approximating spaces and takes advantage of a finite difference formula that allows us to express both ordinary and fractional derivatives of the approximating function in a closed form. Thus, the method is easy to implement, accurate and efficient. The convergence and the stability of the multiscale collocation method are proved and some numerical results are shown.
Keywords: Fractional differential problem; Collocation method; Fractional derivative; Fractional refinable function (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475417302768
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:147:y:2018:i:c:p:210-219
DOI: 10.1016/j.matcom.2017.07.005
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().