Identifying a diffusion coefficient in a time-fractional diffusion equation
T. Wei and
Y.S. Li
Mathematics and Computers in Simulation (MATCOM), 2018, vol. 151, issue C, 77-95
Abstract:
In this paper, we propose a conjugate gradient algorithm for identifying a space-dependent diffusion coefficient in a time-fractional diffusion equation from the boundary Cauchy data in one-dimensional case. The existence and uniqueness of the solution for a weak form of the direct problem are obtained. The identification of diffusion coefficient is formulated into a variational problem by the Tikhonov-type regularization. The existence, stability and convergence of a minimizer for the variational problem approach to the exact diffusion coefficient are provided. We use a conjugate gradient method to solve the variational problem based on the deductions of a sensitive problem and an adjoint problem. We test three numerical examples and show the effectiveness of the proposed method.
Keywords: Inverse diffusion coefficient problem; Fractional diffusion equation; Conjugate gradient algorithm (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475418300673
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:151:y:2018:i:c:p:77-95
DOI: 10.1016/j.matcom.2018.03.006
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().