EconPapers    
Economics at your fingertips  
 

Utilizing data mining techniques to predict expected freeway travel time from experienced travel time

Hasan M. Moonam, Xiao Qin and Jun Zhang

Mathematics and Computers in Simulation (MATCOM), 2019, vol. 155, issue C, 154-167

Abstract: As the most important real-time traveler information, travel time can be either experienced or expected (i.e. to be experienced). When a vehicle completes a trip, the travel time refers to the experienced travel time. In contrast, when a vehicle starts its journey, the travel time is unknown but can be predicted, which is the expected travel time. Although the experienced travel time is termed as the real-time travel time, a traveler may encounter a somewhat different travel time (from expected travel time) due to the changing traffic conditions. Therefore, expected travel time needs to be predicted. In this study, the expected travel time was predicted from the experienced travel time using the data mining techniques such as k-nearest neighbor (k-NN), least squares regression boosting (LSBoost) and Kalman filter (KF) methods. After comparing the performances of KF to corresponding modeling techniques from both link and corridor perspectives, it is concluded that the KF method offers superior prediction accuracy in a link-based model. Moreover, the effect of different noise assumptions was examined and it is found that the steady noise computed from the full-dataset had the most accurate prediction. A data processing algorithm, which processed more than a hundred million records reliably and efficiently was also introduced.

Keywords: Experienced and expected travel time; Arrival and departure time based travel time; Travel time prediction; Data mining; Kalman filter (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475418300260
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:155:y:2019:i:c:p:154-167

DOI: 10.1016/j.matcom.2018.01.006

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:155:y:2019:i:c:p:154-167