EconPapers    
Economics at your fingertips  
 

Effects of nanoparticles (Cu, TiO2, Al2O3) on unsteady blood flow through a curved overlapping stenosed channel

Akbar Zaman, Nasir Ali and Mazhar Sajjad

Mathematics and Computers in Simulation (MATCOM), 2019, vol. 156, issue C, 279-293

Abstract: In this letter, we have explored the effects of nanoparticles on unsteady pulsatile blood flow through a curved overlapping stenosed channel. The governing differential equations are derived for the given physical problem and this contains momentum and energy equations along with suitable boundary conditions. An explicit finite difference technique has been used to calculate the numerical results of the given differential equations. The numerical results for different values of curved parameter (Rc), nanoparticles (Cu, TiO2, Al2O3) and Grashof numbers (Gr) are calculated in order to analyze the effects of these parameters on blood flow pattern. A notable deviation in the results of blood flow pattern has been observed with the comparison of pure blood with nano-fluids. It is further noted that the curved parameter (Rc) of a channel has a great influence on velocity profile, flow rate and impedance/resistance to flow. It is also extracted from the velocity profiles that the shape of the velocity curves reduces to symmetric pattern for the higher values of the curved parameters (Rc). Similarly, the magnitude of temperature profiles is constricted due to the insertion of nanoparticles within blood. Moreover, streamlines are also calculated in order to analyze the effects of nanoparticles inside the circulating regions of the flow field.

Keywords: Unsteady hemodynamics; Blood; Nanoparticles (Cu, TiO2, Al2O3); Grashof number; Curved channel (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475418302106
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:156:y:2019:i:c:p:279-293

DOI: 10.1016/j.matcom.2018.08.012

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:156:y:2019:i:c:p:279-293