Techno-economical optimization of wind power production including lithium and/or hydrogen sizing in the context of the day ahead market in island grids
David Hernández-Torres,
Christophe Turpin,
Xavier Roboam and
Bruno Sareni
Mathematics and Computers in Simulation (MATCOM), 2019, vol. 158, issue C, 162-178
Abstract:
In this article an optimal storage sizing based on technical and economical modeling is presented. A focus is made on wind power producers participating in day-ahead markets for island networks and energy storage using Li-Ion and H2/O2 batteries. The modeling approach is based on power flow models and detailed optimization-oriented techniques. An importance is given to the storage device ageing effects on the overall hybrid system levelized cost of the energy. The results are presented for the special case of renewable power integration in the French islands networks. The analysis obtained after the results shows the importance of this type of modeling tool for decision making during the initial conceptual design level.
Keywords: Wind power; Optimal storage sizing; Day-ahead markets; Island networks (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475418301940
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:158:y:2019:i:c:p:162-178
DOI: 10.1016/j.matcom.2018.07.010
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().