Weak convergence and optimal tuning of the reversible jump algorithm
Philippe Gagnon,
Mylène Bédard and
Alain Desgagné
Mathematics and Computers in Simulation (MATCOM), 2019, vol. 161, issue C, 32-51
Abstract:
The reversible jump algorithm is a useful Markov chain Monte Carlo method introduced by Green (1995) that allows switches between subspaces of differing dimensionality, and therefore, model selection. Although this method is now increasingly used in key areas (e.g. biology and finance), it remains a challenge to implement it. In this paper, we focus on a simple sampling context in order to obtain theoretical results that lead to an optimal tuning procedure for the considered reversible jump algorithm, and consequently, to easy implementation. The key result is the weak convergence of the sequence of stochastic processes engendered by the algorithm. It represents the main contribution of this paper as it is, to our knowledge, the first weak convergence result for the reversible jump algorithm. The sampler updating the parameters according to a random walk, this result allows to retrieve the well-known 0.234 rule for finding the optimal scaling. It also leads to an answer to the question: “with what probability should a parameter update be proposed comparatively to a model switch at each iteration?”
Keywords: Markov chain Monte Carlo methods; Metropolis–Hastings algorithms; Model selection; Optimal scaling; Random walk Metropolis algorithms (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475418301526
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:161:y:2019:i:c:p:32-51
DOI: 10.1016/j.matcom.2018.06.007
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().