Conversion of Mersenne Twister to double-precision floating-point numbers
Shin Harase
Mathematics and Computers in Simulation (MATCOM), 2019, vol. 161, issue C, 76-83
Abstract:
The 32-bit Mersenne Twister generator MT19937 is a widely used random number generator. To generate numbers with more than 32 bits in bit length, and particularly when converting into 53-bit double-precision floating-point numbers in [0,1) in the IEEE 754 format, the typical implementation concatenates two successive 32-bit integers and divides them by a power of 2. In this case, the 32-bit MT19937 is optimized in terms of its equidistribution properties (the so-called dimension of equidistribution with v-bit accuracy) under the assumption that one will mainly be using 32-bit output values, and hence the concatenation sometimes degrades the dimension of equidistribution compared with the simple use of 32-bit outputs. In this paper, we analyze such phenomena by investigating hidden F2-linear relations among the bits of high-dimensional outputs. Accordingly, we report that MT19937 with a specific lag set fails several statistical tests, such as the overlapping collision test, matrix rank test, and Hamming independence test.
Keywords: Random number generation; Mersenne Twister; Equidistribution; Statistical test (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475418302040
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:161:y:2019:i:c:p:76-83
DOI: 10.1016/j.matcom.2018.08.006
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().