EconPapers    
Economics at your fingertips  
 

Sensitivity indices for independent groups of variables

Baptiste Broto, François Bachoc, Marine Depecker and Jean-Marc Martinez

Mathematics and Computers in Simulation (MATCOM), 2019, vol. 163, issue C, 19-31

Abstract: In this paper, we study sensitivity indices for independent groups of variables and we look at the particular case of block-additive models. We show in this case that most of the Sobol indices are equal to zero and that Shapley effects can be estimated more efficiently. We then apply this study to Gaussian linear models, and we provide an efficient algorithm to compute the theoretical sensitivity indices. In numerical experiments, we show that this algorithm compares favourably to other existing methods. We also use the theoretical results to improve the estimation of the Shapley effects for general models, when the inputs form independent groups of variables.

Keywords: Global sensitivity analysis; Sobol indices; Shapley effects (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475419300564
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:163:y:2019:i:c:p:19-31

DOI: 10.1016/j.matcom.2019.02.008

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:163:y:2019:i:c:p:19-31