Sensitivity indices for independent groups of variables
Baptiste Broto,
François Bachoc,
Marine Depecker and
Jean-Marc Martinez
Mathematics and Computers in Simulation (MATCOM), 2019, vol. 163, issue C, 19-31
Abstract:
In this paper, we study sensitivity indices for independent groups of variables and we look at the particular case of block-additive models. We show in this case that most of the Sobol indices are equal to zero and that Shapley effects can be estimated more efficiently. We then apply this study to Gaussian linear models, and we provide an efficient algorithm to compute the theoretical sensitivity indices. In numerical experiments, we show that this algorithm compares favourably to other existing methods. We also use the theoretical results to improve the estimation of the Shapley effects for general models, when the inputs form independent groups of variables.
Keywords: Global sensitivity analysis; Sobol indices; Shapley effects (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475419300564
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:163:y:2019:i:c:p:19-31
DOI: 10.1016/j.matcom.2019.02.008
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().