Validation of a 2D cell-centered Finite Volume method for elliptic equations
Gung-Min Gie,
Chang-Yeol Jung and
Thien Binh Nguyen
Mathematics and Computers in Simulation (MATCOM), 2019, vol. 165, issue C, 119-138
Abstract:
Following the approach in Gie and Temam(2010) and Gie and Temam(2015), we construct the Finite Volume (FV) approximations of a class of elliptic equations and perform numerical computations where a 2D domain is discretized by convex quadrilateral meshes. The FV method with Taylor Series Expansion Scheme (TSES), which is properly adjusted from a version widely used in engineering, is tested in a box, annulus, and in a domain which includes a topography at the bottom boundary. By comparing with other related convergent FV schemes in Sheng and Yuan(2008), Aavatsmark(2002), Hermeline(2000) and Faureet al. (2016), we numerically verify that our FV method is a convergent 2nd order scheme that manages well the complex geometry. The advantage of our scheme is on its simple structure which do not require any special reconstruction of dual type mesh for computing the nodal approximations or discrete gradients.
Keywords: Finite Volume method; Taylor series expansion scheme (TSES); Convergence and stability; Convex quadrilateral meshes (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475419301041
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:165:y:2019:i:c:p:119-138
DOI: 10.1016/j.matcom.2019.03.008
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().