A third-derivative two-step block Falkner-type method for solving general second-order boundary-value systems
Higinio Ramos and
M.A. Rufai
Mathematics and Computers in Simulation (MATCOM), 2019, vol. 165, issue C, 139-155
Abstract:
In this article, a third derivative continuous 2-step block Falkner-type method for the general solution of second order boundary value problems of ordinary differential equations (ODEs) with different types of boundary conditions is developed. The approaches of collocation and interpolation are adopted to derive the new Falkner-type method, which is then implemented in a block mode to get approximations at all the grid points simultaneously. This method is said to be a global method since it simultaneously produces a solution over the entire interval, although it may also be categorized as a boundary value method (see Brugnano and Trigiante (1998)). The order and the convergence analysis of the proposed method are studied. The new Falkner-type scheme is applied to solve linear and non-linear systems of second-order boundary value problems of ODEs considering different types of boundary conditions. Numerical results obtained through the implementation of the scheme are very much close to the theoretical solution and found favourably compared with various existing methods in the literature.
Keywords: Two-step Falkner-type method; Second order differential equations; Modified block method; Linear and nonlinear BVPs (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475419300990
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:165:y:2019:i:c:p:139-155
DOI: 10.1016/j.matcom.2019.03.003
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().