Numerical solution of stochastic integral equations by using Bernoulli operational matrix
Rebiha Zeghdane
Mathematics and Computers in Simulation (MATCOM), 2019, vol. 165, issue C, 238-254
Abstract:
In this paper, a new computational method based on stochastic operational matrix for integration of Bernoulli polynomials is proposed for solving nonlinear Volterra–Fredholm–Hammerstein stochastic integral equations. By using this new operational matrix of integration and the so-called collocation method, nonlinear Volterra–Fredholm–Hammerstein stochastic integral equation is reduced to nonlinear system of algebraic equations with unknown Bernoulli coefficients. This work is inspired by Bazm (2015), where the authors study the deterministic integral equations. In order to show the rate of convergence of the suggested approach, we present theorems on convergence analysis and error estimation. Some illustrative error estimations and examples are provided and included to demonstrate applicability and accuracy of the technique.
Keywords: Bernoulli polynomials; Stochastic operational matrix; Itô integral; Collocation method; Numerical solution (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475419301016
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:165:y:2019:i:c:p:238-254
DOI: 10.1016/j.matcom.2019.03.005
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().