EconPapers    
Economics at your fingertips  
 

A posteriori error estimates and adaptive mesh refinement for the Stokes–Brinkman problem

Kevin Williamson, Pavel Burda and Bedřich Sousedík

Mathematics and Computers in Simulation (MATCOM), 2019, vol. 166, issue C, 266-282

Abstract: The Stokes–Brinkman equations model flow in heterogeneous porous media by combining the Stokes and Darcy models of flow into a single system of equations. With suitable parameters, the equations can model either flow without detailed knowledge of the interface between the two regions. Thus, the Stokes–Brinkman equations provide an alternative to coupled Darcy–Stokes models. After a brief review of the Stokes–Brinkman problem and its discretization using Taylor–Hood finite elements, we present a residual-based a posteriori error estimate and use it to drive an adaptive mesh refinement process. We compare several strategies for the mesh refinement, and demonstrate its effectiveness by numerical experiments in both 2D and 3D.

Keywords: A posteriori error estimates; Stokes–Brinkman problem; Adaptive mesh refinement (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475419301910
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:166:y:2019:i:c:p:266-282

DOI: 10.1016/j.matcom.2019.05.015

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:166:y:2019:i:c:p:266-282