Interpolated variational iteration method for solving the jamming transition problem
Safa Bozkurt Coşkun,
Mehmet Tarık Atay and
Erman Şentürk
Mathematics and Computers in Simulation (MATCOM), 2019, vol. 166, issue C, 481-493
Abstract:
The purpose of this study is to present an analytical based numerical solution for Jamming Transition Problem (JTP) using Interpolated Variational Iteration Method (IVIM). The method eliminates the difficulties on analytical integration of expressions in analytical variational iteration technique and provides numerical results with analytical accuracy. JTP may be transformed into a nonlinear non-conservative oscillator by Lorenz system in which jamming transition is presented as spontaneous deviations of headway and velocity caused by the acceleration/breaking rate to be higher than the critical value. The resulting governing equation of JTP has no exact solution due to existing nonlinearities in the equation. The problem was previously attempted to be solved semi-analytically via analytical approximation methods including analytical variational iteration technique. The results of this study show that IVIM solutions agree very well with the numerical solution provided by the mathematical software. IVIM with two different formulation according to governing equation is introduced. Required order of the solution and number of time steps for a good agreement is determined according to the analyses performed using IVIM.
Keywords: Analytical approximate solution; Interpolated Variational Iteration Method; Jamming Transition Problem; Lorenz system (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475419302216
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:166:y:2019:i:c:p:481-493
DOI: 10.1016/j.matcom.2019.07.006
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().