EconPapers    
Economics at your fingertips  
 

Optimal multilevel preconditioners for isogeometric collocation methods

Durkbin Cho

Mathematics and Computers in Simulation (MATCOM), 2020, vol. 168, issue C, 76-89

Abstract: We present optimal additive and multiplicative multilevel methods, such as BPX preconditioner and multigrid V-cycle, for the solution of linear systems arising from isogeometric collocation discretizations of second order elliptic problems. These resulting preconditioners, accelerated by GMRES, lead to optimal complexity for the number of levels, and illustrate their good performance with respect to the isogeometric discretization parameters such as the spline polynomial degree and regularity of the isogeometric basis functions, as well as with respect to domain deformations.

Keywords: Isogeometric analysis; Collocation methods; Multigrid; Preconditioners; GMRES; Multilevel methods (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475419302320
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:168:y:2020:i:c:p:76-89

DOI: 10.1016/j.matcom.2019.08.003

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:168:y:2020:i:c:p:76-89