EconPapers    
Economics at your fingertips  
 

A generalization of the method of lines for the numerical solution of coupled, forced vibration of beams

Pratik Sarker and Uttam K Chakravarty

Mathematics and Computers in Simulation (MATCOM), 2020, vol. 170, issue C, 115-142

Abstract: Beam vibrations are encountered in real life and are important to investigate for proper monitoring of the structural health. Closed-form solutions to one-dimensional beam vibration problems are not always available, especially, if the governing equations are nonlinear or have strongly coupled multiple degrees-of-freedom for which, the numerical method is the only solution technique. The method of lines is a numerical technique for solving the initial boundary value problems; however, in the literature, the application is mostly based on simple or lower order linear governing equations with only one degree-of-freedom. Therefore, in this paper, the generalized solution of one-dimensional, axially loaded, coupled, forced beam vibration having multiple degrees-of-freedom is developed by the method of lines which is applicable to any other similar initial boundary value problems. Four different case studies featuring coupled/uncoupled, linear/nonlinear governing equations having single/multiple degree(s)-of-freedom with different types of boundary conditions are presented to demonstrate the applicability of the generalized theory. The models are validated either by theoretical solutions, simulated results, or by published results.

Keywords: Forced beam vibration; Numerical solution; Method of lines; Finite difference method; Moving boundary conditions; Nonlinear vibration (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475419303143
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:170:y:2020:i:c:p:115-142

DOI: 10.1016/j.matcom.2019.10.011

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:170:y:2020:i:c:p:115-142