EconPapers    
Economics at your fingertips  
 

Enhanced cultural algorithm to solve multi-objective attribute reduction based on rough set theory

Majid Abdolrazzagh-Nezhad

Mathematics and Computers in Simulation (MATCOM), 2020, vol. 170, issue C, 332-350

Abstract: In extracting hidden information from a data, its high dimension can create challenges in the quality of the extracted information and the search space size. Attribute reduction based on minimizing both missed information and selected subset attributes is logical solution for the challenge. Rough set theory (RST) is an information recognition technique in uncertain data that it shows the value missed information for the selected attributes. In this paper, a multi-objective attribute reduction (MOAR) is modeled by designing a new effective cost function to optimize the minimum number of attributes with the maximum dependency coefficient of the RST. Due to the MOAR is an NP-hard problem, an enhanced draft of cultural algorithm, as a continuous optimization algorithm, is proposed to solve it, as a discrete problem for the first time. The cultural algorithm (CA) with a dual inheritance system is enhanced by utilizing just normative and situational components to generate new individuals and planning a novel heuristic to discrete population and belief spaces. With regard to design the research problem, the CA and five algorithms are implemented to compare their results on twelve well-known UCI datasets in three categories sizes; small, middle and large. The tuning algorithm’s parameters to find the best possible values are done and different size of the population is considered to evaluate the sensitivity of the algorithms on the population size parameter. The experimental results show that the proposed algorithm is able to find competitive results when compared to the state-of-the-art algorithms.

Keywords: Multi-objective attribute reduction; Rough set theory; Cultural algorithm; Discretization; Population sensitivity (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475419303386
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:170:y:2020:i:c:p:332-350

DOI: 10.1016/j.matcom.2019.11.005

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:170:y:2020:i:c:p:332-350