Modelling phagocytosis based on cell–cell adhesion and prey–predator relationship
F. Georgiou and
N. Thamwattana
Mathematics and Computers in Simulation (MATCOM), 2020, vol. 171, issue C, 52-64
Abstract:
Phagocytosis refers to a process in which one cell type fully encloses and consumes unwanted cells, debris or particulate matter. It has an important role in immune systems through the destruction of pathogens and the inhibiting of cancerous cells. In this paper, we combine cell–cell adhesion and predator–prey modelling to generate a new model for phagocytosis that can relate the interaction between cells in both space and time. Stability analysis for both homogeneous and non-homogeneous steady states is provided for one-dimensional model indicating the range of parameters that leads to phagocytosis. Finally, the paper presents numerical results for both one and two-dimensional models, which show excellent agreement with a real phenomenon of bacteria phagocytized by neutrophil cell.
Keywords: Phagocytosis; Cell–cell adhesion; Prey-predator relationship; Continuum model; Partial differential equation; Stability; Steady state (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475419302873
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:171:y:2020:i:c:p:52-64
DOI: 10.1016/j.matcom.2019.09.019
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().