Trajectory tracking control algorithm in terms of quasi-velocities for a class of vehicles
Przemysław Herman and
Wojciech Adamski
Mathematics and Computers in Simulation (MATCOM), 2020, vol. 172, issue C, 175-190
Abstract:
This paper studies the problem of trajectory tracking control for a class of vehicles (underwater vehicles, some horizontally moving vehicles, indoor airships). The control development is based on some velocity transformation arising from the inertia matrix decomposition, Lyapunov’s direct method and a non-adaptive nonlinear tracking controller in terms of the Generalized Velocity Components (GVC). In the nonlinear controller the control gains are strictly related to the vehicle dynamics (especially dynamical couplings). The general algorithm is presented for a 6 DOF vehicle. In the simulation two trajectories were tested. Moreover, one robustness test was done (corresponding to robustness issue considered in this work). The simulation results obtained for a full airship model show that the proposed control scheme guarantees satisfactory performance.
Keywords: Marine systems; Surface vehicle; Hovercraft; Indoor airship; Non-adaptive control; Robustness; Trajectory tracking (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475419303714
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:172:y:2020:i:c:p:175-190
DOI: 10.1016/j.matcom.2019.12.012
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().