Generalized operational matrices and error bounds for polynomial basis
O. Guimarães,
W. Labecca and
José Roberto C. Piqueira
Mathematics and Computers in Simulation (MATCOM), 2020, vol. 172, issue C, 258-272
Abstract:
This work presents a direct way to obtain operational matrices for all complete polynomial basis, considering limited intervals, by using similarity relations. The algebraic procedure can be applied to any linear operator, particularly to the integration and derivative operations. Direct and spectral representations of functions are shown to be equivalent by using the compactness of Dirac notation, permitting the simultaneous use of the numerical solution techniques developed for both cases. The similarity methodology is computer oriented, emphasizing aspects concerning matrices operations, compacting the notation and lowering the computational costs and code elaboration times. To illustrate the operational aspects, some integral and differential equations are solved, including non-orthogonal basis examples, showing the generality of the method and the compatibility of the results with those obtained by other recent research works. As the Dirac notation is used, the projector operator allows to calculate the precision of the obtained solutions and the error superior limit, even if the exact solution is not available.
Keywords: Bernstein polynomials; Differential equations; Dirac notation; Hilbert spaces; Jacobi polynomials; Projector operator (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475419303490
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:172:y:2020:i:c:p:258-272
DOI: 10.1016/j.matcom.2019.12.003
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().