Dynamic large deformation analysis of a cantilever beam
H. Wei,
Q.X. Pan,
O.B. Adetoro,
E. Avital,
Y. Yuan and
P.H. Wen
Mathematics and Computers in Simulation (MATCOM), 2020, vol. 174, issue C, 183-204
Abstract:
A static and dynamic large deformation analysis of a tapered beam subjected to concentrated and distributed loads is presented in this paper by using a direct integration technique. The bending stiffness of the beam is coordinate dependent. The nonlinear differential equation is numerically solved using an iterative technique without an algebraic equation solver, thus the computational effort can be reduced. A concentrated mass fixed at the free end and suddenly released is studied, and the time-dependent displacements are presented. Comparison has been made with solutions obtained using Finite Element Analysis and excellent agreement is achieved.
Keywords: Nonlinear ordinary differential equation; Large deformations; Follower force; Tapered beams; Finite integration method; Static and dynamic loads (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475420300616
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:174:y:2020:i:c:p:183-204
DOI: 10.1016/j.matcom.2020.02.022
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().