Efficient numerical algorithm to simulate a 3D coupled Maxwell–plasma problem
Adnane Hamiaz,
Xavier Ferrieres and
Olivier Pascal
Mathematics and Computers in Simulation (MATCOM), 2020, vol. 174, issue C, 19-31
Abstract:
This paper proposes an improved algorithm, based upon an explicit finite difference scheme, in order to simulate the plasma breakdown induced by a monochromatic High Power Micro-Wave (HPM). The 3D coupled Maxwell–plasma equations are to be solved. We want to study with this model the geometry of the discharge and plasma formation at high pressure which may contribute to shield microwave sensors or circuits. Generally, the simulation of this kind of problem is very time-consuming, but by using the fact that the plasma evolution in time is slow relatively to the monochromatic source period, we can drastically reduce the simulation time. By considering this assumption, we describe in the paper a process which allows to obtain this important reduction. Finally, an example where we show the gain obtained in terms of computation time with our process is given to validate and illustrate the global work.
Keywords: Maxwell’s equations; Fluid plasma model; Time-domain simulations; Yee’s scheme and finite-difference methods (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475420300574
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:174:y:2020:i:c:p:19-31
DOI: 10.1016/j.matcom.2020.02.018
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().