EconPapers    
Economics at your fingertips  
 

Fitting the Bartlett–Lewis rainfall model using Approximate Bayesian Computation

Nanda R. Aryal and Owen D. Jones

Mathematics and Computers in Simulation (MATCOM), 2020, vol. 175, issue C, 153-163

Abstract: The Bartlett–Lewis (BL) rainfall model is a stochastic model for the rainfall at a single point in space, constructed using a cluster point process. The cluster process is constructed by taking a primary/parent process, called the storm arrival process in our context, and then attaching to each storm point a finite secondary/daughter point process, called a cell arrival process. To each cell arrival point we then attach a rain cell, with an associated rainfall duration and intensity. The total rainfall at time t is then the sum of the intensities from all active cells at that time. Because it has an intractable likelihood function, in the past the BL model has been fitted using the Generalised Method of Moments (GMM). The purpose of this paper is to show that Approximate Bayesian Computation (ABC) can also be used to fit this model, and moreover that it gives a better fit than GMM. GMM fitting matches theoretical and observed moments of the process, and thus is restricted to moments for which you have an analytic expression. ABC fitting compares the observed process to simulations, and thus places no restrictions on the statistics used to compare them. The penalty we pay for this increased flexibility is an increase in computational time.

Keywords: Bartlett–Lewis process; Rainfall; Simulation; Generalised method of moments; Approximate Bayesian Computation; Markov Chain Monte Carlo (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475419303313
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:175:y:2020:i:c:p:153-163

DOI: 10.1016/j.matcom.2019.10.018

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:175:y:2020:i:c:p:153-163