EconPapers    
Economics at your fingertips  
 

Solving periodic semilinear stiff PDEs in 1D, 2D and 3D with exponential integrators

Hadrien Montanelli and Niall Bootland

Mathematics and Computers in Simulation (MATCOM), 2020, vol. 178, issue C, 307-327

Abstract: Dozens of exponential integration formulas have been proposed for the high-accuracy solution of stiff PDEs such as the Allen–Cahn, Korteweg–de Vries and Ginzburg–Landau equations. We report the results of extensive comparisons in MATLAB and Chebfun of such formulas in 1D, 2D and 3D, focusing on fourth and higher order methods, and periodic semilinear stiff PDEs with constant coefficients. Our conclusion is that it is hard to do much better than one of the simplest of these formulas, the ETDRK4 scheme of Cox and Matthews.

Keywords: Stiff PDEs; Exponential integrators; Fourier spectral methods; Chebfun (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847542030210X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:178:y:2020:i:c:p:307-327

DOI: 10.1016/j.matcom.2020.06.008

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:178:y:2020:i:c:p:307-327