On the MS-stability of predictor–corrector schemes for stochastic differential equations
A. Tocino,
R. Zeghdane and
M.J. Senosiaín
Mathematics and Computers in Simulation (MATCOM), 2021, vol. 180, issue C, 289-305
Abstract:
Predictor–corrector schemes are designed to be a compromise to retain the stability properties of the implicit schemes and the computational efficiency of the explicit ones. In this paper a complete analytical study for the linear mean-square stability of the two-parameter family of Euler predictor–corrector schemes for scalar stochastic differential equations is given. The analyzed family is given in terms of two parameters that control the degree of implicitness of the method. For each selection of the parameters the stability region is obtained, letting its comparison. Particular cases of the counter-intuitive fact of losing numerical stability by reducing the step size, is confirmed and proved. Figures of the MS-stability regions and numerical examples that confirm the theoretical results are shown.
Keywords: Stochastic scheme; Predictor–corrector schemes; Mean-square stability; Multiplicative noise (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475420303128
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:180:y:2021:i:c:p:289-305
DOI: 10.1016/j.matcom.2020.09.004
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().